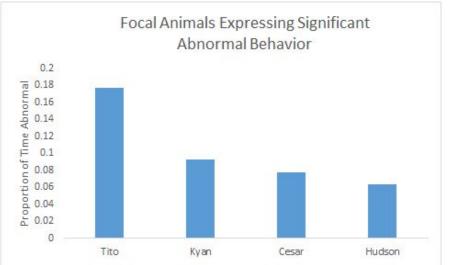
Curator Presentation

Kailee Schulz & Amanda Flannery

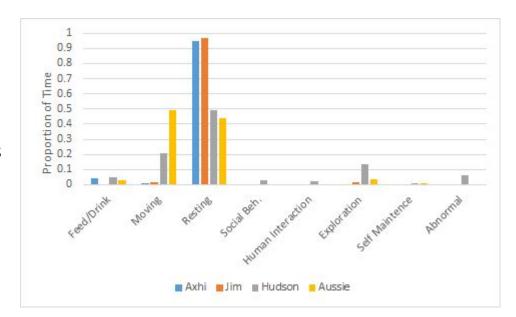
Background

Project Goal: To collect behavioral data across a large taxonomic group in order to establish a baseline of behaviors observed in 25 species of carnivores in the zoo's collection, and to further develop a holistic view of animal welfare.

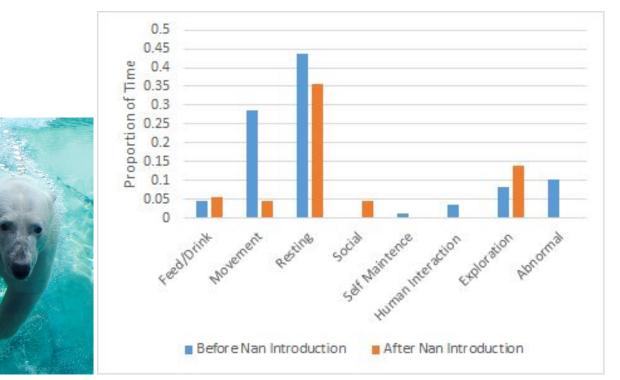
- Behavioral diversity can be defined as a measure of behavioral richness and frequency.
- Animals with high behavioral diversity would be engaged in a variety of species-specific behaviors.
- Animals that have low levels of behavioral diversity are likely stereotyping, neither of which would suggest a positive state of welfare (Mason & Latham 2004).


Methodology

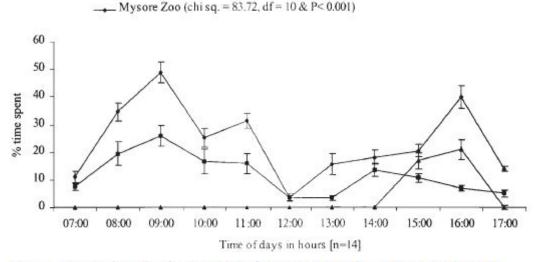
- Winter behavioral observations began on January 30, 2017 and concluded March 24, 2017
- Over 200 hours of data were collected throughout the eight weeks, Monday through Friday
 - Morning observations: 10:00 AM 1:30 PM
 - Afternoon observations: 1:00 PM 4:00 PM
- 60 carnivores spanning 25 species were observed using instantaneous sampling for a duration of five minutes with one minute intervals
- Observations conducted utilizing an ethogram consisting of 24 behavioral states applicable to all carnivores at Brookfield Zoo


Abnormal Behaviors

- Abnormal behavior typically includes behaviors observed only under human care or those observed at higher rates in human care than in wild populations (Hooper, Freeman, & Ross, 2016).
- Abnormal Behavior as defined by this study can include abnormal or stereotypic behavior including
 - Pacing
 - Route Tracing
 - Head Rolling/Weaving
 - Self-Injurious Behaviors
 - R/R
 - Over-Grooming


Great Bear Wilderness Bears

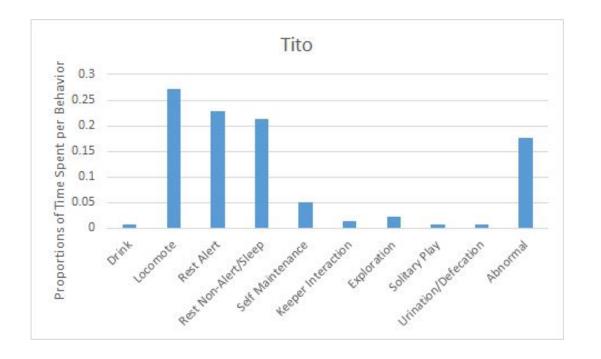
- Montaudouin & Le Pape (2005) found in a study of brown bears (*Ursus arctos*) that stereotypic circling was more common in bears housed with other bears related to them. However, stereotypic pacing was more common in bears housed with other unrelated bears
- Comparison of activity level between the four bears in Great Bear Wilderness


Hudson

Abnormal Behavior in Felids

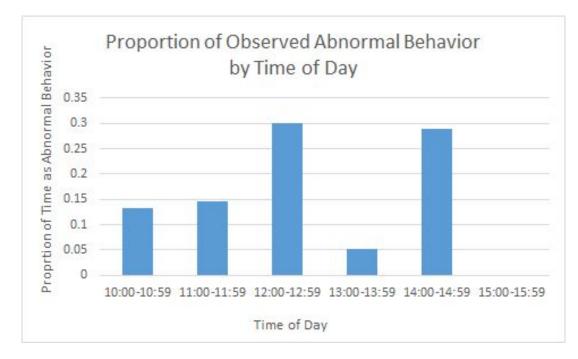
Mallapur and Chellam (2002) found in a study of Indian leopards (*Panthera pardus*), in four India zoos, that stereotypic behavior was influenced by keeper activity, visitor presence, and enclosure type

• Two peaks of stereotypic behavior were observed for all 16 individuals in the study

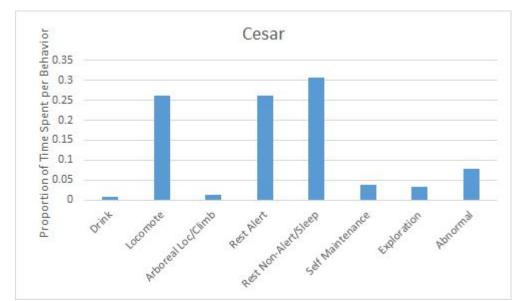

____ Madras Zoo and Guindy Childrens Park (chi sq. = 30.45, df = 10 & P< 0.001)

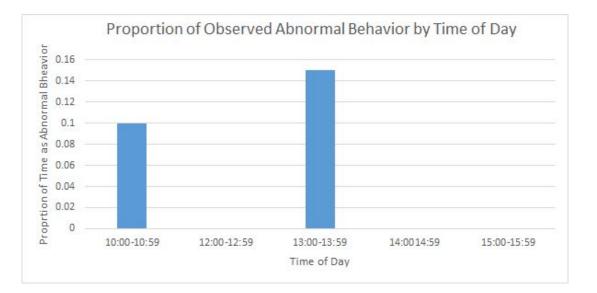
____ Trivandrum Zoo (chi sq. = 41.11, df = 10 & P< 0.001)

Fig. 3. Stereotypic pacing for leopards in four zoos (November 1998 to March 1999).


Mallapur & Chellam (2002)

Tito

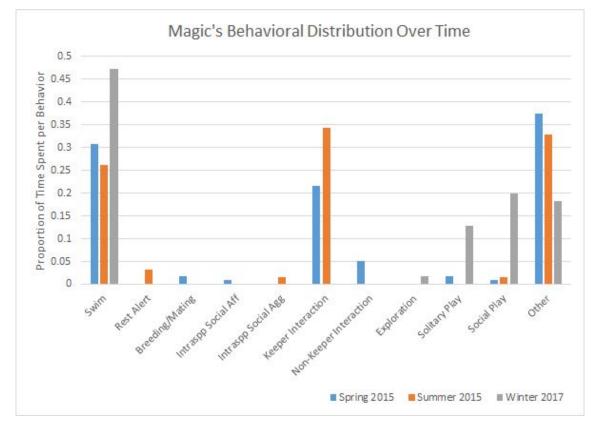

Tito


Cesar

- Spent most of his time rest alert or rest non-alert (~57% of his total time visible)
- Locomote was the third highest behavior recorded at ~26.3%
- Displayed abnormal behavior ~7.7%

Cesar

- Pacing was only observed between two times during the day
 - o **10:00-10:59**
 - o **13:00-13:59**
 - There were no observations conducted between 11:00-11:59



"Other" Behaviors

- Other Behavior is any behavior that is not defined by the ethogram but not considered Abnormal Behavior.
- Magic has such a behavior.

Magic

The impacts of visitor abundance on animal behavior

Kailee's independent project

Background

- Visitor effect studies are key to understanding if the concept of zoos are beneficial to the animals living in one
- Important in creating a positive zoo experience for guests
- Most studies focus on non-human primates
- Results vary among studies, species observed, and implications

Methodology

- Observational data taken on a total of 82 individuals spanning over 27 species
- 3 sessions, 8 weeks each
 - Spring 2015: March 2, 2015- April 24, 2015
 - Summer/Fall 2015: July 27, 2015-September 18, 2015
 - Winter 2017: January 30, 2017-March 24, 2017
- Attendance was averaged weekly
- Data calculated as proportion of time visible
 - Weekly and per individual
- Using SPSS for analyses

Applying Previous Results to My Project

- Primarily looking at over behavioral changes due to influxes in attendance-Are there any patterns?
 - Time, Season, Weather
- Intra or inter-species differences
- Animal Size
 - Smaller species may view visitors as possible predators and are therefore more likely to react with avoidance and defensive behaviours (Margulis, Hoyos, & Anderson, 2003; Hosey, 2000; Chamove & Moodie, 1988).

- Solitary or in group
 - Vigilance is impacted by group size in the wild, does this extend to groups in zoos
- Enclosure Design
 - Inside or outside enclosure

Preliminary Results

- 31 of the 82 individuals included in this study were included in initial SPSS analyses
- Regression analyses were separately performed looking the effect of visitor abundance on the proportion of time an individual spent rest alert, rest non-alert/sleep, and performing some self maintenance behavior

These results are very basic and do not take into account animals that were in holding

Rest Alert

Regression

Variables Entered/Removed^a

Model	Variables Entered	Variables Removed	Method
1	VAR00002 ^b	-1	Enter
2	VAR00003b	-	Enter

a. Dependent Variable: VAR00012

b. All requested variables entered.

Model Summary^c

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.497 ^a	.247	.246	.17231
2	.509 ^b	.259	.257	.17107

a. Predictors: (Constant), VAR00002

b. Predictors: (Constant), VAR00002, VAR00003

c. Dependent Variable: VAR00012

ANOVAª

Mode	91	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	5.970	1	5.970	201.086	.000 ^b
	Residual	18.171	612	.030		
	Total	24.141	613	· · · · · · ·		
2	Regression	6.260	2	3.130	106.953	.000
	Residual	17.881	611	.029		
	Total	24.141	613	1945997.54		

a. Dependent Variable: VAR00012

b. Predictors: (Constant), VAR00002

c. Predictors: (Constant), VAR00002, VAR00003

Rest Non-Alert/ Sleep

Regression

Variables Entered/Removed^a

Model	Variables Entered	Variables Removed	Method
1	VAR00002 ^b		Enter
2	VAR00003 ^b		Enter

a. Dependent Variable: VAR00013

b. All requested variables entered.

Model Summary^c

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.315 ^a	.099	.098	.26949
2	.322 ^b	.103	.101	.26906

a. Predictors: (Constant), VAR00002

b. Predictors: (Constant), VAR00002, VAR00003

c. Dependent Variable: VAR00013

ANOVA^a

Mode	əl	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	4.887	1	4.887	67.288	.000 ^b
	Residual	44.447	612	.073		
	Total	49.334	613			
2	Regression	5.103	2	2.552	35.249	.000 ^c
	Residual	44.231	611	.072		
	Total	49.334	613			

a. Dependent Variable: VAR00013

b. Predictors: (Constant), VAR00002

c. Predictors: (Constant), VAR00002, VAR00003

Self Maintenance

Regression

Variables Entered/Removed^a

Model	Variables Entered	Variables Removed	Method
1	VAR00002 ^b		Enter
2	VAR00003b		Enter

a. Dependent Variable: VAR00019

b. All requested variables entered.

Model Summary^c

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.124 ^a	.015	.014	.03735
2	.125 ^b	.016	.012	.03738

a. Predictors: (Constant), VAR00002

b. Predictors: (Constant), VAR00002, VAR00003

c. Dependent Variable: VAR00019

ANOVA^a

Mode	el	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.013	1	.013	9.597	.002 ^b
	Residual	.854	612	.001		
	Total	.867	613			
2	Regression	.014	2	.007	4.848	.008 ^c
	Residual	.854	611	.001		
	Total	.867	613			

a. Dependent Variable: VAR00019

b. Predictors: (Constant), VAR00002

c. Predictors: (Constant), VAR00002, VAR00003

Inter and IntraSpecies Personality

Amanda's Independent Project

Personality

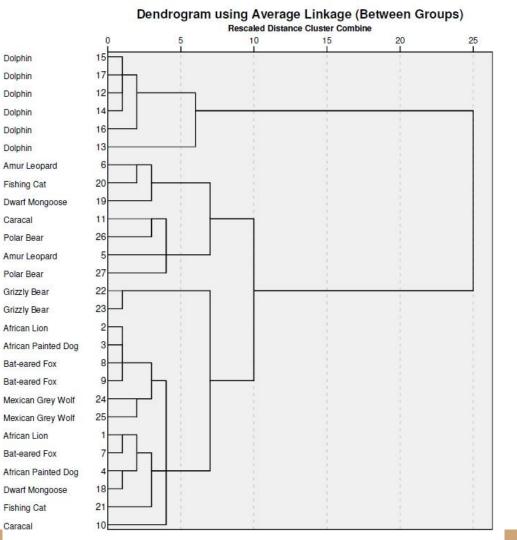
- Is defined as individual behavioral differences observed constantly over time and situations (Freeman & Gosling, 2010).
- Individual differences may reflect personality traits in marine mammals, primates, birds, fish, and invertebrates (Highfill, Hanbury, Kristiansen, Kuczaj, & Watson, 2009)
- Can be used as a tool to promote animal welfare and management (Razal, Pisacane, & Miller, 2016).
 - Assessments may identify and aid individuals that are vulnerable to environmental and social stress (Horback, Miller, & Kuczaj, 2013)
- The key component of personality is the consistency of individual behavioral differences across time (Horback, et al., 2013)

Methods

- Observational data collected on 11 species containing 27 individuals over two periods:
 - March 2, 2015 through April 24, 2015
 - January 30, 2017 through March 24, 2017
- Individuals were observed 5 minutes each day, Monday-Friday, for the 8 week period using instantaneous sampling technique
- An ethogram consisting of 24 behavioral states applicable to all carnivores at Brookfield Zoo
- Microsoft Excel was used to generate a random observation pattern prior to the start of observations
- Data is represented as Proportion of Time Visible
- SPSS was used to calculate Spearman's correlation

Family	Species	Focal
2	African Painted Dog (Lycoon pictus)	Chebacca
		Voltron
Canidae		Otis
	Bat-eared Fox (Otocyon megalotis)	Stella
		Thokoza
	Mexican Grey Wolf (Canis lupus baileyi)	Flint
		Zana
		Allison
		Magic
Catacea	Bottlenose Dolphin (Tursiops truncatus)	Merlin
	,	Noelani
		Spree
		Tapeko
	African Lion (Panthera leo)	lsis
		Zenda
	Amur Leopard (Panthera pardus orientalis)	Kasha
Felidae	· · · · · · · · · · · · · · · · · · ·	Lisa
	Caracal (Caracal caracal)	Cesar
		Dominique
2	Fishing Cat (Prionailurus viverrinus)	Anna
		Chet
Herpestidae	Dwarf Mongoose (Helogale parvula)	Gimbi
ricipestidae		Lord Granthan
	Grizzly Bear (Ursus arctos)	Axhi
Ursidae	energian de anti-arce de la santa desta dadi 700.	Jim
	Polar Bear (Ursus mariltimus)	Aussie
		Hudson

Preliminary Results


- Spearman's Correlation is a nonparametric measure of the strength and direction of association that exists between two variables measured on at least an ordinal scale
- Preliminary significant results using Spearman correlation coefficients
 - Correlation is significant at 0.01
 - o n=27

	Correlation	Correlation	
Behavior	Behavior	Coefficient	Sig. (2-tailed)
Rest Non-Alert	Rest Non-Alert 2	0.886	0.000
Swim	Swim 2	0.871	0.000
Rest Alert	Rest Alert 2	0.833	0.000
Social Play	Social Play 2	0.827	0.000
Locomote	Locomote 2	0.781	0.000
Drink	Drink 2	0.766	0.000
Keeper Interaction	Keeper Interaction 2	0.654	0.000
Float	Float 2	0.561	0.002
Solitary Play	Solitary Play 2	0.517	0.006
Exploration	Exploration 2	0.506	0.007
Arboreal	Arboreal Locomote/		
Locomote/ Climb	Climb 2	0.502	0.008
Abnormal	Abnormal 2	0.494	0.009

Visualizing Personality Dolphin Dolphin

Literature Cited

- Chamove, A.S. and Moodie, E.M. (1990) Are alarming events good for captive monkeys?. *Applied Animal Behaviour Science*, 27, 169-176. Freeman, H. D., & Gosling, S. D. (2010). Personality in nonhuman primates: a review and evaluation of past research. *American Journal of Primatology*, 72(8), 653-671.
- Highfill, L., Hanbury, D., Kristiansen, R., Kuczaj, S., & Watson, S. (2010). Rating vs coding in animal personality research. *Zoo Biology*, *29*(4), 509-516.
- Hopper, L. M., Freeman, H. D., & Ross, S. R. (2016). Reconsidering coprophagy as an indicator of negative welfare for captive chimpanzees. *Applied Animal Behaviour Science*, *176*, 112-119.
- Horback, K. M., Miller, L. J., & Kuczaj, S. A. (2013). Personality assessment in African elephants (Loxodonta africana): Comparing the temporal stability of ethological coding versus trait rating. *Applied Animal Behaviour Science*, *149*(1), 55-62.
- Hosey, G. (2008) A preliminary model of human-animal relationships in the zoo. Applied Animal Behaviour Science, 109, 105-127.
- Hosey, G., Melfi, V. and Pankhurst, S. (2010) *Zoo animals behaviour, management, and welfare*, Oxford University Press, New York, pp. 486-494. Mallapur, A. & Chellam, A. (2002). Environmental influences on stereotypy and the activity budget on Indian leopards (*Panthera pardus*) in four zoos in southern India. *Zoo Biology*, *21*(6), 585-595.
- Margulis, S.W., Hoyos, C. and Anderson, M. (2003) Effects of felid activity on zoo visitor interest. *Zoo Biology*, 22, 587-599.
 Mason, G. J., & Latham, N. R. (2004). Can't stop, won't stop: Is stereotypy a reliable animal welfare indicator?. *Animal Welfare*, *13*, S57-S70.
 Mitchell, H. & Hosey, G. (2005). Zoo research guidelines: Studies of the effects of human visitors on zoo animal behaviour. *BIAZA*, London, UK.
 Montaudouin, S., & Le Pape, G. (2005). Comparison between 28 zoological parks: Stereotypic and social behaviours of captive brown bears (*Ursus arctos*). *Applied Animal Behaviour Science*, *92*(1), 129-141.
- Razal, C. B., Pisacane, C. B., & Miller, L. J. (2015). Multifaceted approach to personality assessment in cheetahs (*Acinonyx jubatus*). *Animal Behavior and Cognition*, *3*(1), 22-31.